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Abstract
It is demonstrated that the dual Ernst equation of general relativity constitutes
a stationary Loewner system. In an analogous manner, it is shown that the
Einstein–Maxwell equations for stationary axisymmetric space-times and their
extension to Einstein’s equations coupled with an arbitrary number of U(1)
gauge fields may be interpreted as generalized Loewner systems. Moreover, it
is recorded that the base Geroch transformation for the (dual) Ernst equation
may be located in a class of infinitesimal Bäcklund transformations introduced
by Loewner in 1952. A Geroch-type transformation for a generic class of
2 + 1-dimensional Loewner systems is set down and it is shown how the
base Geroch and Hoenselaers–Kinnersley–Xanthopoulos transformations are
naturally retrieved.

PACS numbers: 04., 02.30.-f, 04.20.-q, 04.40.Nr

1. Introduction

The integrable nature of Einstein’s vacuum equations for stationary axisymmetric space-times
was indicated and established around 1978 by a variety of individuals and groups such as
Belinsky and Zakharov [2], Harrison [9], Kinnersley and Chitre [12–14], Maison [23] and
Neugebauer [26]. There has since then been extensive research on the application of solution
generation techniques to the Ernst and Einstein–Maxwell equations and other integrable cases
of Einstein’s equations (see [11] and references therein). However, in 1972, albeit at a
somewhat theoretical level, it was shown by Geroch [7] that, in principle, an internal symmetry
group may be exploited to generate stationary axisymmetric space-times in vacuum of arbitrary
complexity. Later, it was indeed established that other solution generation techniques may be
traced back to this ‘Geroch group’. An account of the connections between group-theoretic
and soliton-theoretic methods for generating solutions of Einstein’s equations has been given
by Cosgrove in [3].
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In 1950, Loewner [21] introduced a generalization of the notion of classical Bäcklund
transformations. His investigations were concerned with a search for multi-parameter
pressure–density laws for which the hodograph equations of plane gasdynamics may be
reduced by finite Bäcklund transformations to tractable forms in various flow régimes.
Only recently [38], these have been identified as binary Darboux-type transformations
which are standard in soliton theory [24]. In 1952, Loewner [22] introduced in the same
context the concept of infinitesimal Bäcklund transformations. It was not until 1991 that,
suitably reinterpreted and extended, Loewner’s infinitesimal Bäcklund transformations were
also shown to have profound connections with soliton theory. Thus, Konopelchenko and
Rogers [15, 16] proposed regarding the continuous parameter in Loewner’s infinitesimal
Bäcklund transformation as a third independent variable so that Loewner’s consistency
conditions may be interpreted as a 2 + 1-dimensional system of nonlinear matrix differential
equations. This approach led to the discovery of a long-sought integrable 2 + 1-dimensional
generalization of the classical sine-Gordon equation wherein the two ‘spatial’ variables occur
on an equal footing. Since its introduction, the ubiquitous character of the integrable Loewner
(–Konopelchenko–Rogers) system in mathematics and mathematical physics, especially in the
context of classical differential geometry, has been well documented [27–29, 31–37, 39].

In this paper, infinitesimal Geroch and Loewner transformations are brought together for
the first time. Specifically, we show that the base Geroch transformation for the dual Ernst
equation which may be regarded as the ‘master equation’ for stationary axisymmetric fields
constitutes nothing but a particular Loewner transformation. This result was instigated by
the earlier observation that the Ernst equation and, more generally, the Ernst–Weyl equation
descriptive of the interaction of neutrino and gravitational fields [1, 41] represent canonical
2+0-dimensional reductions of the Loewner system [31,33]. In fact, we here demonstrate that
the stationary axisymmetric Einstein–Maxwell field equations and their extension to Einstein’s
equations coupled with an arbitrary number ofU(1) gauge fields may likewise be interpreted as
stationary generalized Loewner systems. Generalized Loewner systems have been introduced
in [29] and constitute ‘squared eigenfunction’ symmetries of the multi-component (modified)
Kadomtsev–Petviashvili ((m)KP) hierarchy.

The Geroch–Loewner connection is exploited to reformulate the base Geroch
transformation for the dual Ernst equation in a manner which allows immediate generalization.
Thus, we here present an infinitesimal Geroch-type transformation for the 2 + 1-dimensional
Loewner system which reduces to the standard base Geroch transformation in the case
of Einstein’s equations. By construction, this Geroch-type transformation encapsulates
another 2 + 1-dimensional Loewner system which is compatible with the original Loewner
system. In fact, it is readily seen that, in the generic case, the two Loewner systems
appear in a symmetric manner so that either Loewner system may be regarded as
defining an infinitesimal Geroch-type transformation for the other Loewner system. This
observation sheds new light on the relation between the dual Ernst equation and its base
Geroch transformation. However, it is shown that in a degenerate case, the infinitesimal
Geroch-type transformation may be integrated explicitly to obtain a particular case of
Loewner’s finite Bäcklund transformations. Remarkably, in the context of the dual Ernst
equation, the base Hoenselaers–Kinnersley–Xanthopoulos (HKX) transformation [10] is
retrieved.

The results presented in this paper may now be used to study the action of infinitesimal
and finite Geroch-type transformations on any integrable system which resides in the
Loewner system. Since the Loewner system has been shown to encode a variety of
geometrically significant systems, a geometric interpretation of the Geroch-type transformation
is of particular interest. Moreover, the application of Geroch-type transformations not
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only in Loewner’s original gasdynamics setting but also in nonlinear elastodynamics and
electromagnetic wave propagation [30] may now be investigated.

2. The Ernst equation and its base Geroch transformation

It is well known that the metric of a four-dimensional space-time with two commuting space-
and time-like Killing vectors may be cast into block-diagonal form

ds2 = e2k(dx2 + dy2) + g33 dϕ2 + 2g34 dϕ dt + g44 dt2 (1)

if the Killing vectors are orthogonal transitive. Such space-times are termed stationary and
axisymmetric. Here, the metric coefficients depend on x and y only. In terms of the trace-free
matrix-valued function

F =
(

g34 g33

−g44 −g34

)
, (2)

Einstein’s vacuum field equations

Rµν = 0 (3)

then reduce to [12]

∇ ·
(

1

ρ
F∇F

)
�ρ = 0 (4)

with the definitions

ρ2 = − det F ∇ =
(
∂x
∂y

)
� = ∇2. (5)

The remaining metric coefficient k is obtained in terms of quadratures.

2.1. The Ernst equation and its dual

A canonical parametrization of the matrix F is given by

F = ρ

F + F∗

( F − F∗ 2FF∗

2 F∗ − F
)

(6)

so that the field equations reduce to

�F +
∇ρ · ∇F

ρ
= 2

(∇F)2

F + F∗ (7)

and its ‘conjugate’ obtained by formally applying the star operations (F)∗ = F∗ and
(F∗)∗ = F together with the harmonicity condition �ρ = 0. Alternatively, one may exploit
the ‘conservative’ form of (4)1 and introduce a matrix-valued potential � according to

∇̃� = − 1

ρ
F∇F ∇̃ =

(
∂y

−∂x

)
. (8)

It is noted that ∇ · ∇̃ = 0. If we now set

H = F + i� (9)

then the important linear relation

∇H = i

ρ
F ∇̃H (10)
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is obtained. In fact, by construction, the field equations are equivalent to (10) subject to the
constraint

�(H) = F. (11)

The latter is the origin of the nonlinear character of the field equations.
The complex coefficient

E = H21 (12)

is readily shown to obey the Ernst equation [6]

�E +
∇ρ · ∇E

ρ
= (∇E)2

�(E) . (13)

Since the Ernst equation and (7) are formally related by the Kramer–Neugebauer
transformation [19]

(S) (F,F∗) → (E, Ē), (14)

the latter equation is regarded as dual to the Ernst equation. Specifically, if, for convenience,
we adopt the Lewis–Papapetrou form [20]

ds2 = 1

f
(e2γ (dx2 + dy2) + ρ2 dϕ2) − f (dt − ω dϕ)2 (15)

of the space-time metric then the Ernst potential

E = f + iψ (16)

is related to the metric coefficients by the contact transformation encoded in the lower-left
component of (8), that is

∇̃ω = ρ

f 2
∇ψ. (17)

Conversely, for any solution E of the Ernst equation, the matrix

F =
(
fω ρ2/f − fω2

f −fω

)
, (18)

where the functions f and ω are defined by (16) and (17) respectively, may be shown to
obey (4).

2.2. The base Geroch transformation

It is evident that the matrix equation (4) is invariant under the Matzner–Misner
transformation [25]

(M) F → C−1FC, (19)

where C is a nonsingular constant matrix. By construction, this transformation acts directly
on the metric coefficients gik and may be compensated for by a linear transformation of the
ignorable coordinates ϕ and t . The Matzner–Misner transformation may be interpreted as a
Möbius transformation of the form

F → aF + b

cF + d
F∗ → aF∗ − b

−cF∗ + d
(20)

acting on the dual Ernst equation (7). Here, the constants a, b, c and d are defined in terms of
the matrix C. The analogue of the Möbius transformation (20) for the Ernst equation is given
by the Ehlers transformation [5]

(E) E → ãE + ib̃

ic̃E + d̃
, (21)
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where the constants ã, b̃, c̃ and d̃ are real.
The transformations S,M and E may be exploited in the following manner. Given a

solution (F,F∗) of the dual Ernst equation (or, equivalently, a space-time metric), one first
applies the Matzner–Misner transformation M and then maps the new solution of the dual Ernst
equation to a solution of the Ernst equation by means of the Kramer–Neugebauer transformation
S. The Ehlers transformation E is then applied and the result is mapped to another solution of
the dual Ernst equation via the inverse of the Neugebauer transformation S−1. The composite
transformation

(G) (F,F∗) → (S−1 ◦ E ◦ S ◦ M)(F,F∗) (22)

is known as a Geroch transformation [7]. The infinitesimal action of the base Geroch
transformation G on F has been shown to be

Fε = [�γ,F ] (23)

where γ is a trace-free but otherwise arbitrary constant matrix.
In principle, it is possible to generate solutions of the stationary axisymmetric vacuum

gravitational field equations which contain an arbitrary number of parameters by successive
application of the base Geroch transformation (22). This is due to the fact that base Geroch
transformations with different sets of parameters generally do not commute. However,
in practice, the explicit representation of Geroch transformations has proven to be highly
nontrivial and requires the introduction of an infinite hierarchy of so-called Kinnersley–Chitre
potentials [13, 14]. These potentials have been used to show that the collection of Geroch
transformations forms an infinite-dimensional Banach Lie group [40]. An important subset of
this group constitute the finite HKX transformations [10]. The fundamental importance of the
Geroch group in connection with other solution generation techniques for Einstein’s equation
has been discussed in detail in [3].

3. The Loewner connection

3.1. A class of Loewner systems

In 1952, Loewner [22], in the context of reduction of the hodograph system of
plane gasdynamics to canonical form, introduced the notion of infinitesimal Bäcklund
transformations for the linear matrix equation

φy = Sφx. (24)

In particular, he sought infinitesimal transformations of the form

φxt = V φx + Wφ φyt = Ṽ φy + W̃φ (25)

which leave the hodograph-type system (24) invariant. Here, all matrices depend
parametrically on t , that is S = S(x, y; t) etc. In 1991, Konopelchenko and Rogers [15]
reinterpreted these Bäcklund transformations in a soliton-theoretical setting in terms of 2 + 1-
dimensional integrable systems. Thus, if the parameter t is regarded as a third independent
variable then the triad (24), (25) may be viewed as a linear representation of the nonlinear
matrix system obtained from its compatibility conditions, namely

St = [V, S] Vy − VxS + [W,S] = 0 Wy = (SW)x (26)

together with Ṽ = V and W̃ = SW . In this interpretation, the Loewner system has been
shown to lead to a wide class of solitonic equations of physical or mathematical interest either
by way of inclusion or compatibility [16,29,33,36,37,39]. For instance, a 2 + 1-dimensional
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integrable extension of the classical sine-Gordon equation has been obtained by Konopelchenko
and Rogers [15–17] via the canonical constraints S2 = 1I, tr S = 0.

A natural eigenfunction parametrization of the Loewner system is obtained by introducing
a matrix potential & according to

&x = W &y = SW (27)

and a matrix-valued function ψ via

V = & + ψ† (28)

where † denotes Hermitian conjugation. The Loewner system (26) then reads

St = [& + ψ†, S] &y = S&x ψy = S†ψx. (29)

Thus, & may be regarded as an ‘eigenfunction’ in that it is another solution of the linear
equation (24). However, it is emphasized that, in general, & does not obey the remaining
pair (25). The quantity ψ constitutes an adjoint eigenfunction since (29)3 is nothing but the
‘integrated’ adjoint of (24). Furthermore, the Loewner system in the form (29) gives rise to a
bilinear potential M = M(ψ, φ) defined by

Mx = ψ†φx My = ψ†φy. (30)

The pair (25) may therefore be ‘integrated’ to obtain a ‘nonlocal’ linear representation of the
Loewner system, namely

φy = Sφx φt = &φ + M(ψ, φ). (31)

It is directly verified that the above linear system is indeed compatible modulo the Loewner
system (29).

3.2. The dual Ernst equation

In [31], it has been shown that the Ernst equation (13) constitutes a particular stationary
Loewner system. By virtue of the Kramer–Neugebauer transformation (14), the dual Ernst
equation should also be a 2 + 0-dimensional reduction of the Loewner system. Indeed, if one
sets

S = − i

ρ
F V = 2(F + iν1I) W = Hx (32)

where ν is conjugate to the harmonic function ρ, that is

νx = ρy νy = −ρx (33)

then the field equations (4) or, equivalently, the dual Ernst equation (7) may be cast into the
form

[V, S] = 0 Vy − VxS + [W,S] = 0 Wy = (SW)x. (34)

Thus, a stationary Loewner system is obtained wherein, remarkably, the matrix S encapsulates
the nontrivial part of the space-time metric (1). We observe in passing that, if one ignores
the implicit constraint �(H) = F then the system (34) constitutes a slight generalization of
the dual Ernst equation. At the level of the Ernst potential E , it has been shown [33] that this
corresponds to a generalized Ernst equation which governs neutrino and gravitational fields in
axially symmetric space-times [1, 41].

In view of the following, it proves instructive to interpret the above result in terms of the
eigenfunction parametrization (29) of the Loewner system. To this end, we first observe that
the matrix F admits the discrete symmetry

F T = σFσ σ =
(

0 1
−1 0

)
(35)
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since F is trace-free. The quantity Ĥ defined by

Ĥ = σHσ (36)

therefore obeys the linear equation

∇Ĥ = − i

ρ
F T∇̃Ĥ (37)

which represents the adjoint of the key linear equation (10). Thus,H and Ĥ constitute (adjoint)
‘eigenfunctions’. Moreover, the definition (8) of � implies that

∇̃�T = σ ∇̃�σ + 2∇̃ν1I. (38)

Without loss of generality, we may assume that

�T = σ�σ + 2ν1I (39)

which results in the identity

Ĥ † = −H + 2(F + iν1I). (40)

If we now set

S = − i

ρ
F ψ = Ĥ & = H (41)

then we obtain

[& + ψ†, S] = 0 &y = S&x ψy = S†ψx. (42)

It is evident that the representations (32) and (41) are equivalent. In conclusion, it is remarked
that relations of the type (36) between eigenfunctions and adjoint eigenfunctions are associated
with standard admissible reductions of the Loewner system [29].

3.3. The base Geroch transformation

In the preceding, we have identified the linear equations (10) and (29)2 in order to establish
the Loewner–Ernst connection. Since both Loewner and Geroch provide invariances of
this linear equation and (23) and (26)1 are identical in form, there may exist a connection
between Loewner’s infinitesimal Bäcklund transformations and the infinitesimal Geroch
transformations. This proves to be the case. Thus, if we set

V ′ = �γ +
1

2i
tr(H̄γ )1I W ′ = 1

2i
Hxγ (43)

then it is readily seen that

Sε = [V ′, S] V ′
y − V ′

xS + [W ′, S] = 0 W ′
y = (SW ′)x. (44)

Accordingly, we obtain the remarkable result that the base Geroch transformation may be
interpreted as a 2 + 1-dimensional Loewner system and, in turn, a particular infinitesimal
Loewner transformation. In fact, in order to verify this result, it is sufficient to show that the
quantity ψ′ defined by

V ′ = &′ + ψ′† &′ = 1

2i
Hγ (45)

constitutes an adjoint eigenfunction. To this end, it is noted that (45)1 may be written as

ψ′† = &̄′ − tr(&̄′)1I (46)

which simplifies to

ψ′ = σ&′σ (47)
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by virtue of the identity

QT = σQσ + tr(Q)1I (48)

for any 2×2 matrix Q and henceψ′ is indeed an adjoint eigenfunction. It is also noted that the
(adjoint) eigenfunctions &′ and ψ′ associated with the base Geroch transformation are related
to those corresponding to the dual Ernst equation by

&′ = &τ ψ′ = ψτ † τ = 1

2i
σ (49)

whence

Sε = [&τ + τψ†, S]. (50)

3.4. A Geroch-type transformation for the generic Loewner system

The above observation may be exploited to define Geroch-type transformations for any 2 + 1-
dimensional Loewner system. Indeed, it is readily verified that the Loewner system (29) is
invariant under the evolution

Sε = [&τ + τψ†, S]

&ε = [τ,N ] + [&τ,&] + &tτ

ψ†
ε = [τ,ψ†& − N ] + [τψ†,ψ†] + τψ†

t ,

(51)

where the bilinear potential N is defined by the compatible equations

Nx = ψ†&x Ny = ψ†&y (52)

and τ denotes an arbitrary constant matrix. It is noted that the quantities

S &′ = &τ ψ′ = ψτ † (53)

constitute a solution of another 2 + 1-dimensional Loewner system, namely

Sε = [&′ + ψ′†, S] &′
y = S&′

x ψ′
y = S†ψ′

x. (54)

Thus, it has been established that this Loewner system is compatible with the original Loewner
system (29). By construction, in the case of the dual Ernst equation, the Loewner system (54)
reduces to that associated with the base Geroch transformation.

3.5. HKX transformations

As mentioned in the previous section, infinitesimal Geroch transformations may be integrated
explicitly only under particular circumstances. For instance, the class of finite HKX
transformations [10] is obtained by choosing a degenerate matrix γ , that is

γ 2 = 0 (55)

without loss of generality. This constraint arises naturally in the context of the Geroch-
type transformation (51) for the Loewner system discussed in the preceding. Thus, the
ε-evolutions (51)2,3 for & and ψ imply that

(&′
ε − &′2 − N ′) = (&t − &2 − N)τ 2

(ψ′†
ε + ψ′†2 + ψ′†&′ − N ′) = τ 2(ψ†

t + ψ†2 + ψ†& − N).
(56)

If the matrix τ is nonsingular then it is concluded that the Loewner systems (29) and (54) occur
on an equal footing. This implies that the original Loewner system (29) likewise encapsulates
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an infinitesimal Geroch-type transformation for the Loewner system (54). However, if we
impose the constraint

τ 2 = 0 (57)

then this symmetry is broken and &′ and ψ′ must obey the ε-evolutions

&′
ε = &′2 + N ′ ψ′†

ε = −ψ′†2 − ψ′†&′ + N ′. (58)

These are indeed compatible with the Loewner system (54). This is evident since comparison
with the nonlocal Lax pair

φ′
y = Sφ′

x φ′
ε = &′φ′ + M(ψ′, φ′) (59)

for the Loewner system and its ‘adjoint’ [29] reveals that, for instance, the condition (58)1

is equivalent to demanding that &′ be a ‘proper’ eigenfunction which satisfies both (59)1

and (59)2.
Remarkably, it has been shown [38] that if one assumes that the matrix eigenfunction &

associated with any 2+1-dimensional Loewner system (26) also satisfies the ‘t-evolutions’ (25)
and the adjoint eigenfunction ψ obeys the adjoint evolutions then the Loewner system may
be integrated and one obtains Loewner’s finite Bäcklund transformations [21] introduced in
1950 which, in turn, have been identified as standard binary Darboux transformations [24].
Thus, the base HKX transformation constitutes a particular finite Loewner transformation.
This is in agreement with the fact that HKX transformations may be related to Harrison
transformations [9] in certain confluence limits [4].

4. Generalized Loewner systems and Einstein–Maxwell equations

4.1. Stationary axisymmetric Einstein–Maxwell field equations

In 1977, Kinnersley showed that the Einstein–Maxwell equations

Gµν = FµαFν
α − 1

4gµνFαβFαβ

Fµν ;ν = 0 Fµν = Aν,µ − Aµ,ν

(60)

where Gµν, Fµν and Aµ denote the Einstein and electromagnetic field tensors and the
electromagnetic four-vector potential, respectively, may be cast into a ‘most attractive
form’ [12] in the case of axisymmetric stationary space-times. Thus, in terms of a complex
matrix H , a complex vector ϕ and the matrix F introduced in the preceding, the field equations
may be formulated as

∇H = i

ρ
F ∇̃H ∇ϕ = i

ρ
F ∇̃ϕ (61)

subject to the constraint

�(H) = F + �(ϕϕ†σ + κ1I), (62)

where the ‘quadratic’ potential κ is defined by

∇κ = ϕ†σ∇ϕ. (63)

Here, the key observation is that H and ϕ satisfy the same linear equation. Once again, the
nonlinearity of the field equations is due to the constraint (62).

Decomposition of H and ϕ into

H = F + �(ϕϕ†σ) + i[0 − �(ϕϕTσ)] + κ1I ϕ = A + iB (64)
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yields

∇̃0 = − 1

ρ
[F∇F + 2F(∇A)ATσ − 2A(∇A)TσF ]

∇̃B = − 1

ρ
F∇A.

(65)

The compatibility conditions for (65)1 and (65)2 then result in the nontrivial parts of Einstein’s
equations (60)1 and Maxwell’s equations (60)2,3 respectively:

∇ ·
(

1

ρ
[F∇F + 2F(∇A)ATσ − 2A(∇A)TσF ]

)
= 0

∇ ·
(

1

ρ
F∇A

)
= 0.

(66)

The Ernst potential E and the electromagnetic potential & may now be defined as E = H21

and & = ϕ2, in terms of which the field equations read [6]

f

ρ
∇ · (ρ∇E) = (∇E + 2&̄∇&) · ∇E

f

ρ
∇ · (ρ∇&) =(∇E + 2&̄∇&) · ∇&

(67)

with f = �(E) + |&|2.

4.2. Generalized Loewner systems

Generalized Loewner systems were introduced in [29] in connection with squared
eigenfunction symmetries of the multi-component (m)KP hierarchy. Here, we focus on a
particular subclass of generalized Loewner systems. Thus, a natural extension of the linear
representation (31) for the Loewner system in the form (29) is obtained by introducing a finite
number of (adjoint) eigenfunctions &n,ψn obeying the linear equations

&ny = S&nx ψny = S†ψnx (68)

and associated bilinear potentials Mn = M(ψn, φ) defined by

Mnx = ψ†
nφx Mny = ψ†

nφy. (69)

Here, any pair (&n,ψn)may be either matrix-valued or vector-valued. It is now readily verified
that the linear system

φy = Sφx φt =
∑
n

&nM(ψn, φ) (70)

is compatible modulo

St =
[ ∑

n

&nψ
†
n, S

]
&ny = S&nx ψny = S†ψnx. (71)

The generalized Loewner system (71) reduces to the standard Loewner system (29) if one
makes the choice

&1 = & &2 = 1I ψ1 = 1I ψ2 = ψ. (72)
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4.3. The Loewner–Einstein–Maxwell connection

A particular stationary generalized Loewner system is obtained by choosing

&1 = & &2 = 1I &3 = ϕ̂

ψ1 = 1I ψ2 = ψ ψ3 = ψ̂,
(73)

where the (adjoint) eigenfunctions ϕ̂ and ψ̂ constitute vectors, namely

[& + ψ† + ϕ̂ψ̂†, S] = 0

&y = S&x ψy = S†ψx ϕ̂y = Sϕ̂x ψ̂y = S†ψ̂x.
(74)

Comparison with the Einstein–Maxwell field equations (61) shows that we may employ the
identifications

S = − i

ρ
F & = H ϕ̂ = 2ϕ ψ̂ = σϕ. (75)

Thus, the Loewner equations (74)2,4,5 are satisfied. As in sections 3.2 and 3.3, a canonical
definition for ψ is

ψ = σHσ (76)

so that (74)3 is identically satisfied. Indeed, a straightforward calculation analogous to that
leading to (40) shows that

ψ† = −H + 2ϕϕ†σ + 2(F + iν1I) (77)

and hence the remaining commutator relation (74)1 holds. Accordingly, the Einstein–
Maxwell equations for axisymmetric stationary space-times may be interpreted as a stationary
generalized Loewner system. It is noted that the nonlocal linear representation of the latter
given by

φy = Sφy λφ = &φ + M(ψ, φ) + ϕ̂M(ψ̂, φ) (78)

where λ is a constant parameter, differs from the standard Lax pairs for the axisymmetric
stationary Einstein–Maxwell field equations [18] in that it involves 2 × 2 rather than 3 × 3
matrices.

4.4. The Einstein–(Maxwell)N equations

We conclude our considerations with the remark that, in the same manner, the stationary
generalized Loewner system[

& + ψ† +
∑
n

ϕ̂nψ̂
†
n , S

]
= 0

&y = S&x ψy = S†ψx ϕ̂ny = Sϕ̂nx ψ̂ny = S†ψ̂nx

(79)

may be related to

∇H = i

ρ
F ∇̃H ∇ϕn = i

ρ
F ∇̃ϕn (80)

subject to the constraint

�(H) = F +
∑
n

�(ϕnϕ
†
nσ + κn1I), (81)

where

∇κn = ϕ†
nσ∇ϕn. (82)
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This system, in turn, is known to be equivalent to Einstein’s equations for axisymmetric
stationary space-times coupled with an arbitrary number of U(1) gauge fields. These may be
written as [8]

f

ρ
∇ · (ρ∇E) =

(
∇E + 2

∑
m

&̄m∇&m

)
· ∇E

f

ρ
∇ · (ρ∇&n) =

(
∇E + 2

∑
m

&̄m∇&m

)
· ∇&n

(83)

with f = �(E) +
∑

m |&m|2. The Geroch-type transformation for the Loewner system set
down in section 3 may now readily be extended to capture generalized Loewner systems and,
in particular, the integrable cases of Einstein’s field equations discussed in this section.
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[5] Ehlers J 1959 Les Théories Relativistes de la Gravitation (Paris: CRNS)
[6] Ernst F 1968 New formulation of the axially symmetric gravitational field problem. I/II Phys. Rev. 167 1175–8

Ernst F 1968 Phys. Rev. 168 1415–17
[7] Geroch R 1971 A method for generating solutions of Einstein’s equations. I/II J. Math. Phys. 12 918–24

Geroch R 1972 J. Math. Phys. 13 394–404
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Math. Soc.) at press
[36] Schief W K and Rogers C 1996 The geometry of the LKR system. Application of a Laplace–Darboux-type

transformation to Ernst-type equations Proc. Nonlinear Physics, Theory and Experiment ed E Alfinito,
M Boiti, L Martina and F Pempinelli (Singapore: World Scientific) pp 305–12

[37] Schief W K and Rogers C 1996 On a Laplace sequence of nonlinear integrable Ernst-type equations Algebraic
Aspects of Integrable Systems: In Memory of Irene Dorfman (Prog. Nonlinear Diff. Eq.) vol 26, ed A Fokas
and I M Gelfand (Boston: Birkhäuser) pp 315–21
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